

Algorithm 筆記

Algorithm 快速上手

作者: sheng0603

時間: April 3, 2022

版本: 1.0

目錄

第1章	User Manual	1
1.1	使用說明	1
1.2	購買筆記的好處	1
第2章	The Role of Algorithms in Computing	3
2.1	演算法的定義	3
2.2	演算法對電腦硬體執行程式,效率上的重大影響	3
2.3	函數的執行時間比較	4
第3章	Getting Started	5
3.1	先行知識	5
3.2	證明與分析演算法的正確性與運行時間的方法	6
	3.2.1 證明與分析 Insertion-Sort 的正確性與運行時間 (running time)	6
	3.2.2 證明與分析 Merge-Sort 的正確性與運行時間 (running time)	8
第4章	Growth of Functions	13
4.1	Asymptotic notation (漸進符號)	13
4.2	漸進符號的基礎知識與性質	13
第5章	Divide-and-Conquer	15
5.1	基礎知識	15
5.2	代換法 (The substitution method)	16
	5.2.1 範例: 證明 $T(n) = 2T(\lfloor n/2 \rfloor) + n$, where $T(1) = 1$ 的 $T(n) = O(n \lg n)$	17
	5.2.2 範例: 證明 $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ 的 $T(n) = O(n)$	17
	5.2.3 範例: 證明 $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$ 的 $T(n) = O(\lg n \lg \lg n)$	17
5.3	遞迴樹法 (The recursion-tree method)	18
	5.3.1 範例: 證明 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ 的 $T(n) = O(n^2)$	18
	5.3.2 範例: 證明 $T(n) = T(n/3) + T(2n/3) + O(n)$ 的 $T(n) = O(n \log_2 n)$	20
5.4	大師法 (The master method)	21
	5.4.1 範例: $T(n) = 9T(n/3) + n$, $T(n) = \Theta(?)$	21
	5.4.2 範例: $T(n) = T(2n/3) + 1$, $T(n) = \Theta(?)$	21
	5.4.3 範例: $T(n) = 3T(n/4) + n \log_2 n, T(n) = \Theta(?)$	22
	5.4.4 範例: $T(n) = 2T(n/2) + n \log_2 n$, $T(n) = \Theta(?)$	22
	5.4.5 範例: $T(n) = 2T(n/2) + \Theta(n), T(n) = \Theta(?)$	22
	5.4.6 $\widehat{\mathfrak{A}}$ \mathfrak{G} \mathfrak{G} : $T(n) = 8T(n/2) + \Theta(n), T(n) = \Theta(?)$	22

		目錄				
	5.4.7 範例: $T(n) = 7T(n/2) + \Theta(n), T(n) = \Theta(?)$	22				
第6章	Dynamic Programming	23				
6.1	先行知識	23				
6.2	動態規劃 (Dynamic Programming)	24				
6.3	Rod-cutting Problem	25				
6.4	Matrix-chain Multiplication Problem	28				
6.5	Elements of dynamic programming	32				
6.6	Longest Common Subsequence	33				
6.7	Optimal Binary Search Trees Problem	36				
第7章	Greedy Algorithms	39				
7.1	基礎知識	39				
7.2	An activity-selection problem	39				
7.3	Elements of the greedy strategy					
7.4	Huffman codes	45				
第8章	NP-Completeness	47				
8.1	先行知識	47				
8.2	NP-completeness proofs 範例	49				
	8.2.1 SAT \leq_p 3-CNF-SAT	49				
	8.2.2 3-CNF-SAT \leq_p Clique	50				
	8.2.3 Clique \leq_p Vertex-Cover	51				
参考文质		54				

第1章

User Manual

本章學習重點

□ 使用說明

1.1 使用說明

- 筆記是根據『台灣大學電資學院』的演算法用書 (書名: Introduction to algorithms, 作者: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein), 所寫成的筆記。
- 筆記目的: 幫助快速恢復演算法到熟悉狀態。(遺忘是正常的!)
- 筆記章節: 參照 Introduction to algorithms 的章節名稱。
- 重新排版演算法,增加清晰度,避免不必要的誤解。(參考圖 1.1 與圖 1.2。)

1.2 購買筆記的好處

- 精美的排版。(參考圖 1.3, 圖 1.4, 圖 1.5。)
- 詳細的推導過程。(參考圖 1.6, 圖 1.7。)
- 終生保固。(只要購買一次,之後如有更新或修正內容,都可透過 e-mail 免費獲得更新內容。)

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

圖 1.1: 書本排版。

```
Algorithm 6.8: Print-Optimal-Parens(s, i, j)

1 Print-Optimal-Parens(s, i, j)

2 if i = j then

3 | print "A_i";

4 else

5 | print "(";

6 | Print-Optimal-Parens(s, i, s[i, j]);

7 | Print-Optimal-Parens(s, s[i, j] + 1, j);

8 | print ")";

9 end
```

圖 1.2: 筆記排版。

定義 2.1 (演算法定義)

什麼是演算法: (What are algorithms?)

定義 1. 演算法是將輸入轉換為輸出的一係列有序計算步驟。

(原文: An algorithm is a sequence of computational steps that transform the input into the output.)

定義 2. 演算法是任何定義明確的計算過程,它將某個值或一組值作為輸入,並產生一些 值或一組值作為輸出。

(原文: An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.)

補充说明1.考試,使用哪個定義都可以,但通常只有2分,建議使用簡潔的定義1,即可拿分,多的時間攻略大分題。

補充说明 2. 英文好的同學,也可直接寫英文定義。

圖 1.3: 精美排版: 定義

定理 5.1 (大師法 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence T(n) = aT(n/b) + f(n).

Then T(n) has the following asymptotic bounds:

case 1. If $f(n) = O(n^{((\log_b a) - \epsilon)})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. 快速記法: 即 $f(n) < n^{\log_b a}$ 時套用。

cbse 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ 快速記法: 即 $f(n) = n^{\log_b a}$ 時套用。

ccse 3. If $f(n) = \Omega(n^{((\log_\delta a)+\epsilon)})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$. 快速記法: $\mbox{$\mathbb{P}$} f(n) > n^{\log_\delta a}$ 時套用。

 \spadesuit 額外補充: $f(n) = \Theta(n^{\log_b a} \log_2^{-k} n)$, where $k \ge 0$, 則 $T(n) = \Theta(n^{\log_b a} \log_2^{-k+1} n)$.

圖 1.4: 精美排版: 定裡

題型 6.2 (Matrix-Chain Multiplication Problem)

給定一個矩阵序列 (鏈)($A1,A2,...,A_n$),包含 n 個矩陣,其中 i=1,2,...,n,矩陣 A_i 的维度为 $p_{i-1} \times p_i$,經某種括號方式獲得 $A_1A_2...A_n$ 乘積時,可以最小化使用乘法的次數。 ([原文] Given a sequence (chain) ($A1,A2,...,A_n$) of n matrices, where for i=1,2,...,n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications.)

$$((\begin{bmatrix}1\\2\end{bmatrix}\times\begin{bmatrix}1&2\end{bmatrix})\times\begin{bmatrix}1&2\\3&4\end{bmatrix}) = \begin{bmatrix}1\cdot1&1\cdot2\\2\cdot1&2\cdot2\end{bmatrix}\times\begin{bmatrix}1&2\\3&4\end{bmatrix} = \begin{bmatrix}1\cdot1+2\cdot3&1\cdot2+2\cdot4\\2\cdot1+4\cdot3&2\cdot2+4\cdot3\end{bmatrix}$$

使用12個乘法,但

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 7 & 1 \cdot 10 \\ 2 \cdot 7 & 2 \cdot 10 \end{pmatrix}$$

只使用8個乘法

圖 1.5: 精美排版: 題型

$\therefore T(n) \leq dn log_2 n$

$$\begin{split} & :: T(n) = T(n/3) + T(2n/3) + O(n) \\ & \le T(n/3) + T(2n/3) + cn \\ & \le d(n/3) \log_2(n/3) + d(2n/3) \log_2(2n/3) + cn \\ & = (dn/3) (\log_2 n - \log_2 3 + 2\log_2 2n - 2\log_2 3) \end{split}$$

$$= (dn/3)(\log_2 n - \log_2 3 + 2\log_2 2 + 2\log_2 n - 2\log_2 3)$$

$$= (dn/3)(3\log_2 n - 3\log_2 3 + 2) + cn$$

$$= (dn)(\log_2 n - \log_2 3 + 2/3) + cn$$

 $\leq dn \log_2 n$, 取 $d \geq c/(\log_2 3 - 2/3)$, 故得證

圖 1.6: 詳細的推導過程。

圖 1.7: 詳細的推導過程。

第2章

The Role of Algorithms in Computing

本章學習重點

□ 演算法的定義

率上的重大影響

□ 了解演算法對電腦硬體執行程式,效

2.1 演算法的定義

定義 2.1 (演算法定義)

什麼是演算法: (What are algorithms?)

定義 1. 演算法是將輸入轉換為輸出的一係列有序計算步驟。

(原文: An algorithm is a sequence of computational steps that transform the input into the output.)

定義 2. 演算法是任何定義明確的計算過程,它將某個值或一組值作為輸入,並產生一些 值或一組值作為輸出。

(原文: An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.)

補充说明 1. 考試,使用哪個定義都可以,但通常只有 2 分,建議使用簡潔的定義 1,即可拿分,多的時間攻略大分題。

補充说明 2. 英文好的同學, 也可直接寫英文定義。

2.2 演算法對電腦硬體執行程式,效率上的重大影響

為解決同一個問題,而設計的不同演算法,在效率上往往差異很大。這些差異可能比硬體和軟體造成的差異更為顯著。

表 2.1: 電腦 A 與電腦 B, 的硬體參數與所使用的演算法

名稱	input size	硬體效能	使用的演算法 時間複雜度
電腦 A	10 million (=10 ⁷)	10 billion (=10 ¹⁰) 指令/秒	
電腦 B	10 million (=10 ⁷)	10 million (=10 ⁷) 指令/秒	

以表 2.1為例子,電腦 A 的硬體效能,每秒能執行 10^{10} 個指令,電腦 B 的硬體效能,每秒能執行 10^7 個指令,所以硬體效能方面,電腦 A 比電腦 B 快 1000 倍。

但電腦 A 採用 insertion-sort 演算法,所以電腦 A 花費的時間 = $\frac{\$76 \text{ insertion-sort 所需指令個數 (即時間複雜度)}}{\$ \Xi \text{ Im A 的 两體效能}}$ = $\frac{2n^2 \pm 2}{10^{10} \pm 2}$ = $\frac{2\cdot (10^7)^2 \pm 2}{10^{10} \pm 2}$ = $\frac{50 \cdot 100_2 \cdot n}{10^7 \pm 2}$ = $\frac{50 \cdot 100_2 \cdot n}{10^7 \pm 2}$ = $\frac{50 \cdot 10^7 \cdot 100_2 \cdot n}{10^7 \pm 2}$ = $\frac{50 \cdot 10^7 \cdot 100_2 \cdot n}{10^7 \pm 2}$ = $\frac{50 \cdot 100_2 \cdot n}{10^7 \pm 2}$ = $\frac{$

由此觀之,雖然電腦 B 的硬體效能雖然比電腦 A 慢 1000 倍,但採用較優秀的演算法,最後,執行時間却反比電腦 A 快 17 倍,由此可見優秀的演算法對電腦硬體的執行效率,著實有重大影響。

尤其,當 input size n = 100 million numbers,採用 insertion-sort 演算法的電腦 A 需花費 23 天,但採用 merge-sort 演算法的電腦 B 僅需花費 4 個小時。再次得證,演算法對電腦硬體執行效率的影響,不可謂之不甚。

2.3 函數的執行時間比較

- $\lg n < \sqrt{n} < n < n \lg n < n^2 < n^3 < 2^n < n!.(參考圖 2.1)$
- Non-Polynomial functions (ex: 2ⁿ or n!) 只要 n 稍微大一點 (ex: 51 or 17),就需要花費執行一個世紀時間。
- 由此可知,設計演算法的執行時間是 Polynomial time (ex: $n \lg n$) 會更有效率。

		1 Second	1 Minute	1 Hour	1 Day	1 Month	1 Year	1 Century
1	lg n	$2^{1 \times 10^6}$	$2^{6 imes10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.592 \times 10^{12}}$	$2^{3.1536 \times 10^{13}}$	$2^{3.15576 \times 10^{15}}$
	\sqrt{n}	1×10^{12}	3.6×10^{15}	1.29×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.96×10^{30}
Polynomial	\overline{n}	1×10^{6}	6×10^7	3.6×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.16×10^{15}
	$n \lg n$	62746	2801417	133378058	2755147513	71870856404	797633893349	6.86×10^{13}
	n^2	1000	7745	60000	293938	1609968	5615692	56176151
↓	n^3	100	391	1532	4420	13736	31593	146679
Non-Polynomial	2^n	19	25	31	36	41	44	51
	n!	9	11	12	13	15	16	17

3.1: Comparison of running times